
CV SERIES TRANSDUCER SPECIFICATIONS

CV-425 PIEZOELECTRIC VELOCITY TRANSDUCER

4-20mA loop powered transducer with temperature output

Model Code

Straight type		CW-425S-		- 🖳
		Cable length	P	Armor
	16	Approx.4.8m (16ft)	0	Without
	32	Approx 9 6m (32ft)	1	With

Standard

SPECIFICATIONS			
Output	4-20mA		
Full Scale, 20mA, ±5%	See Model Code below		
Frequency Response	10Hz to 1.0kHz ± 10% 4Hz to 2.0kHz ± 3dB		
Transverse Sensitivity	Max. 5%		
Temperature Output Sensitivity	10mV/K (at 0°C = 2.73V)		
Temperature Output Error	±5K (±5°C)		
Temperature Measurement Range	223 to 358K (-50 to +85°C) / 2.23V to 3.58V		
Power Requirements, 2-wire loop power Voltage, between pins A and B	10 to 30 VDC		
Loop Resistance *1	Max. 700Ω at 24VDC		
Turn On Time,4-20mA Loop	30 seconds		
Grounding	Case isolated, internally shielded		
Power Requirements, Tenperature Sensor *4	Voltage source 12 to 18V Current 0.4 to 5 mA		
Operating Temperature Range	-40 to +85°C		
Vibration Limit	2,450 m/s² (250g REF.) pk		
Shock Limit	24,500 m/s ² (2,500g REF.) pk		
Weight	Approx. 320g (excluding cable)		
Case Material	Stainless Steel		
Protection Rating	IP66(CV-425&CW)		
Mounting	M6×1 captive bolt (1 piece)		

*1 Maximum loop resistance (R_L) can be calculated by: $R_L = \frac{V_{DC \; power} \; - \; 10V}{20mA}$

Supply voltage and R∟				
DC supply voltage	R∟(max resistance)*²	R∟(minimum wattage capability)*³		
12VDC	100Ω	1/8 watt		
20VDC	500Ω	1/4 watt		
24VDC	700Ω	1/2 watt		
26VDC	Ω 008	1/2 watt		
30VDC	1,000Ω	1/2 watt		

- *2 Lower resistance is allowed, greater than 10 Ω recommended.
- *3 Minimum R_L wattage determined by: (0.0004 x R_L).
- *4 The temperature sensor must have a current flow to operate. This current can be provided through constant-current diodes.